\qquad

C.U.SHAH UNIVERSITY

Summer-2015
Subject Code: 4te01feel
Course Name: B.Tech
Subject Name: Fundamental Electrical Engineering
Semester:I

Date: 6/5/2015
Marks: 70
Time:10:30 TO 01:30

Instructions:

1) Attempt all Questions of both sections in same answer book/Supplementary.
2) Use of Programmable calculator \& any other electronic instrument prohibited.
3) Instructions written on main answer book are strictly to be obeyed.
4) Draw neat diagrams \& figures (if necessary) at right places.
5) Assume suitable \& perfect data if needed.

SECTION-I

Q-2 A. Explain Ohm's law, state its limitations.
B. State and explain Coulombs Laws of electrostatics.
C. The equivalent capacitance of two capacitors when connected in series is 0.03 $\mu \mathrm{F}$ and when connected in parallel is $0.16 \mu \mathrm{~F}$. Find the capacitance of both the capacitors.

OR

Q-2 A. The resistance of a coil embedded in a large transformer is 12 Ohms at $25^{\circ} \mathrm{C} . \quad 05$05

After the transformer has been in operation for several hours, the resistane of the coil is found to be 13.4 Ohms . Find the temperature of the transformer. Take $\alpha_{20}=0.00393{ }^{0} \mathrm{C}^{-1}$.
B. Derive the relation between mutual inductance and reluctance.
C. Derive the equation $C=\frac{\varepsilon_{0 \mathrm{~A}}}{\Sigma \frac{\mathrm{~d}}{\varepsilon_{\mathrm{r}}}}$ for the parallel plate capacitor

Page 1 of 3
C. U. SHAH UNIVERSITY

(1) Current (2) Potential (3) Electric Field Intensity.
B. State and explain Kirchoff's Laws.
A. Define following

\qquad

Q-3
A. Obtain an expression for the equivalent star network resistance for a given delta network resistances.
B. Derive the expression of inductance for the coupled coil connected in series.

OR

Q-3 A. An iron ring having a cross sectional area of 5 cm x 4 cm , a mean diameter of 18 cm has a coil of 270 turns uniformly wounded over it. A current of 1.27 A flows through the coil which produces a flux of 1.13 mWb in the ring. Find the reluctance of the circuit, the absolute permeability of Iron.
B. Derive the expression for Energy stored in a charged capacitor.

SECTION-II

Q-4 A. Define following terms with respect to A.C. waveform
(i) R.M.S. value (ii) Power factor
(iii) Peak factor (iv) Form Factor
(iii) Peak factor (iv) Form Factor
B.

Draw the clear A.C. waveform. Lable time period, X and Y axes for voltage and time, and peak to peak values.

Q-5 A. Prove that current in pure inductive circuit lags its voltage by 90°
B. Give the advantages of three phase system over single phase system.
C. Find the capacitance which must be connected in seires with a $100 \mathrm{~W}, 110 \mathrm{~V}$ 04 lamp inorder that the lamp may draw its normal current when the combination is connected to a $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply.

OR
Q-5 A. Prove that for purely capacitive circuit current be leading 90° to applied voltage.
B. What are the various electrical losses in a transformer? Explain them.05
C. An alternating current having an equation $\mathrm{I}=60 \sin 314 \mathrm{t}$.

Find: (i) Maximum value of current (ii) Frequency

Page $\mathbf{2}$ of $\mathbf{3}$

Q-6 A. A voltage of 125 V at 50 Hz is applied across a non inductive resistor connected in series with a condenser. The current in the circuit is 2.2 A the power loss in the resistor is 96.8 W and that in condenser is negligible. Calculate the values of resistances and capacitances.
B. Explain the working principle and construction of a transformer.

OR
Q-6 A. Calculate 1) form factor 2) peak factor of a full wave rectified sine wave.
B. Prove that RMS value of a sinusoidal current is $0.707 \mathrm{I}_{\mathrm{m}}$.

